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ABSTRACT
A quality-time analysis of multi-objective evolutionary al-
gorithms (MOEAs) based on schema theorem and build-
ing blocks hypothesis is developed. A bicriteria OneMax
problem, a hypothesis of niche and species, and a definition
of dissimilar schemata are introduced for the analysis. In
this paper, the convergence time, the first and last hitting
time models are constructed for analyzing the performance
of MOEAs. Population sizing model is constructed for de-
termining appropriate population sizes. The models are ver-
ified using the bicriteria OneMax problem. The theoretical
results indicate how the convergence time and population
size of a MOEA scale up with the problem size, the dis-
similarity of Pareto-optimal solutions, and the number of
Pareto-optimal solutions of a multi-objective optimization
problem.

Categories and Subject Descriptors
Theory of Computation [Analysis of Algorithms and
Problem Complexity]: General

General Terms
Algorithms

Keywords
Convergence, Dissimilar schemata, Multi-objective evolu-
tionary algorithms, Population sizing

1. INTRODUCTION
The great success for evolutionary algorithms (EAs) tech-

niques [1, 6, 14], including evolutionary programming (EP),
evolutionary strategy (ES), genetic algorithm (GA), came
in the 1980s when extremely complex optimization prob-
lems from various disciplines were solved, thus facilitating
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the undeniable breakthrough of evolutionary computation as
a problem-solving methodology. Recently, multi-objective
evolutionary algorithms (MOEAs) have been recognized to
be well-suited for solving multi-objective optimization prob-
lems (MOOPs) because their abilities to exploit and explore
multiple solutions in parallel and to find a widespread set of
non-dominated solutions in a single run.

Although MOEAs have been shown to be effective for
solving many real-world applications and exploring com-
plex non-linear search spaces as efficient optimizers, MOOPs
present three types of difficulty for practitioners of EAs. The
first difficult is that, search spaces of problems depend on
a large number of parameters (decision variables), known
as large parameter optimization problems (LPOPs) [13, 16].
LPOPs pose a great challenge to decision makers due to the
large parametric space to choose from and the possibility
of large infeasible and non-uniform areas. Second, MOOPs
are usually multi-modal problems, Pareto-optimal solutions
spreads on search spaces and are composed of different de-
cision variables. A decision variable may be optimal for a
Pareto-optimal solution but bad for the other one. A Pareto-
optimal solution may be similar to the other solutions in
some variables, but indifferent in the rest of the variables.
This causes difficulty in locating the multiple peaks of solu-
tions, and hence diversity preservation becomes an impor-
tant issue in designing MOEAs [3, 4]. The last difficulty is
that, the number of Pareto-optimal solutions in a MOOP
usually grows as the number of objectives of the MOOP in-
creases [3, 4]. In continuous parameters problems, the num-
ber of Pareto optimal solutions may be infinite. This gives
another challenge in finding all the Pareto-optimal solutions.
There have been many efforts to design EAs faster, but only
a few theoretical work have been done in analyzing how these
three difficulties affect the convergence of MOEAs [17].

The objectives of this paper is to conduct quality-time
analysis of multi-objective evolutionary algorithms (MOEAs)
based on design decomposition theory of genetic algorithms [8,
10], in order to solve multi-objective optimization problems,
quickly, reliably, and accurately. The issues focus on the
following three topics:

1. The convergence time of MOEAs. Since MOEAs process
building blocks (BBs), it is important to understand
the growth of BBs in solving MOOPs under the ex-
istence of multiple objective functions. In particular,
we are interested in identifying what kind of charac-
teristics of MOOPs will affect the convergence time of
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MOEAs. For example, when the number of Pareto-
optimal solutions in a MOOP grows or the problem
size of a MOOP increases, how does the convergence
time of MOEAs change?

2. The first and last hitting time. The first and last hit-
ting time stand for the time for MOEAs to obtain
the first and last Pareto-optimal solutions. Identify-
ing these time may provide hints for designing efficient
MOEAs.

3. The population sizing model for MOEAs. Because
GAs work on the fitness of an individual containing
multiple building blocks (locally superior partial solu-
tions), they face a statistical decision problem when
deciding among competing BBs. For example, a bad
BB might be selected over its competitors because it
comes with other good BB in the same individual.
Given a particular BB, fitness contribution of the BBs
from other partitions in the individual can be consid-
ered as noise to the fitness. To solve MOOPs using
MOEAs, due to a MOOP consists of multiple Pareto-
optimal solutions, good BBs of a Pareto-optimal solu-
tion may not also be good BBs of the other Pareto-
optimal solutions. This produces difficulties for decid-
ing BB well. As a result, it is essential to develop a
population sizing model for MOEAs to make statisti-
cally correct decisions among competing BBs.

In this paper, a bicriteria OneMax problem is extended from
OneMax problem for the analysis. A hypothesis of niche
and species and a definition of dissimilar schemata are in-
troduced for the above-mentioned topics. By integrating
the selection intensity [21], the noise model [18], the hy-
pothesis of niche and species, and the definition of dissimilar
schemata, the convergence time model of MOEAs for the bi-
criteria OneMax problem is constructed. By making use of
the takeover time of GAs [9], the first and last hitting time
of Pareto-optimal solutions are derived. Based on the Gam-
ber’s Ruin model [11], the noise model, the hypothesis of
niche and species, and the definition of dissimilar schemata,
a population sizing model is derived to give an approximated
bound. The theoretical results indicates that convergence
time and population sizing of MOEAs is affected by the
problem size, the dissimilarity of Pareto-optimal solutions,
and the number of Pareto-optimal solutions, in a MOOP.

This is paper is organized as follows. Section 2 introduces
OneMax and bicriteria OneMax problem and the conver-
gence time model of the OneMax problem. Section 3 derives
convergence-time of MOEAs by making uses of the hypothe-
sis of niche and species, the noise model, and the definition of
dissimilar schemata. The first and last hitting time models
of Pareto-optimal solutions is given in Section 4. Section 5
briefly described the gambler’s ruin model and derived the
population sizing model for MOEAs. Section 6 presented
the experimental verification. Section 7 concludes this pa-
per.

2. BACKGROUND

2.1 OneMax and Bicriteria OneMax Problems
Before conducting the quality-time analysis of MOEAs, a

brief outline of OneMax problem and its extension - bicrite-
ria OneMax problem is presented. The bicriteria OneMax

problem is used as the verification of the quality-time analy-
sis of MOEAs.

The OneMax problem is well-known and well-studied in
the context of GAs. The OneMax problem is a bit-counting
problem where the fitness value of each binary string is equal
to the number of 1s in it. The simplicity of the OneMax
problem makes it a prime candidate to study the perfor-
mance of GAs. OneMax problem is defined as follows:

f =
X̀
i=1

xi, (1)

where xi is the value of the ith allele. The global optimum
of the OneMax problem is a string with all 1s and its fitness
value is equal to the string length `. OneMax problem has
the following properties:

1. BBs are of equal salience: Every BB has the same
contribution to the fitness value.

2. Alleles converge uniformly.

3. The fitness is distributed binomially.

Therefore, the mean of fitness values can be written as µt =
`pt, and the variance of fitness values is σ2

t = `pt(1 − pt),
where pt is the proportion of correct BBs in generation t.

A bicriteria OneMax problem is developed for analyzing
MOEAs. The bicriteria OneMax problem is defined by

Maximize

�
f1 = `− d(A, A1)
f2 = `− d(A, A2)

, (2)

where A is the string to be evaluated, A1, and A2 are two
fixed strings with length `, and d(A, Ai) is Hamming dis-
tance function to calculate the string A and Ai. If the fixed
string A is an all-1s string, then the corresponding objective
function f1 will be that of the OneMax problem. The num-
ber of Pareto-optimal solutions, Q, in the bicriteria OneMax
problem can be calculated by

Q = 2d(A1,A2). (3)

In this paper, unless otherwise mentioned, A1 is an all-1s
string, and A2 is an all-1s string except the last b bits of A2

are 0s. Therefore, d(A1, A2) = b = 4 and Q = 16.

2.2 Convergence Time Model of the OneMax
Problem

For the OneMax problem, the convergence model is de-
rived by using the response to selection equation [21]:

4µ = µt+1 − µt = Iσt. (4)

This equation was derived by calculating the difference be-
tween mean fitness of two populations at times t and t + 1
using the selection intensity I, and the population’s fitness
variance σ2

t at time t. Equation 4 depicted as the expected
increase in the average fitness of a population after selec-
tion is performed upon a population whose fitness is dis-
tributed according to a unit normal distribution. The se-
lection intensity for different selection schemes is tabulated
elsewhere [20]. For tournament selection, I is a constant
depending on the tournament size s, approximated in terms
of s by the relation [2]:

I =

q
2(log(s)− log(

p
4.14 log(s)) (5)

1456



Using Equation 5 and substituting the mean and variance
values in terms of proportion of correct BBs, pt:

pt+1 − pt =
I√
`

p
pt(1− pt), (6)

where ` is the string length of the OneMax problem. Ap-
proximating the above difference equation with a differential
equation yields

dpt

dt
=

I√
`

p
pt(1− pt). (7)

Integrating the above equation with an initial proportion of
correct BBs as p0, we obtain

pt =
1

2
[1− cos(

It√
`

+ 2 sin−1√p0)]. (8)

Assuming that the initial population is randomly generated,
therefore p0=0.5. Equation 8 can be rewritten as a function
of time:

pt =
1

2
[1 + sin(

It√
`
)]. (9)

The convergence time of the OneMax problem, tconv, can
be determined by substituting pt = 1:

tconv =
π
√

`

2I
(10)

3. CONVERGENCE TIME MODEL OF THE
BICRITERIA ONEMAX PROBLEM

In this section, convergence-time model of MOEAs for
bicriteria OneMax problem is derived. First, a hypothesis of
niche and species is introduced. Then, the convergence time
model with noises [18] is described for tackling the disrupt
noises caused by multiple species. A definition of dissimilar
schemata extended from the schema theory is proposed to
calculate disrupt noises.

3.1 Hypothesis of Niche and Species
By extending Equation 10, we can proceed to derive the

convergence time model for the bicriteria OneMax problem.
Given a MOOP with Q Pareto-optimal solutions, Q Pareto-
optimal solutions can be regarded as Q niches based on the
theory of niche and schema theory [7, 14]. In the worst case,
to ensure MOEAs is capable of searching Q Pareto-optimal
solutions, it is assumed that the population was divided
into Q species (subpopulations), ℵq, q = 1, 2, ..., Q, and each
species optimizes its own niche (Pareto-optimal solution),
as shown in Figure 1. Therefore, the optimal schemata of a
species is its Pareto-optimal solution. Let the schemata of
species be Hq, where the fixed positions are the maximum
common string of all individuals in its species and the others
are ”don’t care”. Since species are in the same population,
a schemata of a species may be disrupted by schemata of
the other species due to genetic operators. The disruption
between species can be further classified into the following
two types:

1. Species disrupt noise: The fixed 0/1 schemata of
Horigin are altered to ”don’t care” schemata by the
corresponding positions of other schemata Hother. Thus,
a species requires more time for fixing its ”don’t care”
schemata.

*00011****

****1011**

f 2

f1

Figure 1: The population was divided into several
species, and each species optimizes its own niche
(Pareto-optimal solution).

2. Species hitchhiking effect: The ”don’t care” schemata
of Horigin are altered to fixed 0/1 schemata by the cor-
responding positions of the other schemata Hother. If
the altered schemata are located in the similarity re-
gions of their optimal schemata, the change is good for
the schemata Horigin. On the contrary, the change is
bad for the schemata Horigin.

However, because multiple species exist in the population,
thereby the chance of altering a 0/1 schema to a ”don’t care”
schema is bigger than that of altering a ”don’t care” schema
to a 0/1 schema. Therefore, in this paper, only the species
disrupt noise is considered in the convergence model. The
species hitchhiking effect can be modeled using the same
way.

3.2 Modeling Noise in the Convergence Time
Model

To model the species disrupt noise into the convergence
model of MOEAs, we can use the convergence time model
with noisy fitness functions [18] to predict convergence time
in the presence of external noise caused by other species.

The noisy fitness function F1 can be written as

F1 = F + N1, (11)

where F is the actual fitness distribution F ∼ N (µℵq,t, σ
2
ℵq,t),

and N1 is the external noise, N1 ∼ N (0, σ2
N1). Since both

the actual fitness and noise are normally distributed, the
noisy fitness function is also normally distributed:

F1 ∼ N (µℵq,t, σ
2
ℵq,t + σ2

N1). (12)

Using a bivariate normal distribution, the expected true fit-
ness value of an individual is:

E(F | f1) = E(F ) +
cov(F1, F )

σ2
F1

(f1 − µF1), (13)

where E(F ) is the expected value of F , and cov(F1, F ) is the
covariance between F1 and F . From Equations 12 and 13,
we know E(F ) = µℵq,t, σ2

F1 = σ2
ℵq,t +σ2

N1 , and µF1 = µℵq,t.
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The covariance between F1 and F is given by

cov(F1, F ) = E(F1, F )− E(F1)E(F )

= E((F + N1)F )− µ2
ℵq,t

= E(F 2) + E(N1F )− µ2
ℵq,t. (14)

Since the actual fitness and the noise are independent of
each other, E(N1F ) = E(N1)E(F ) = 0. Therefore, the
above equation can be written as

cov(F1, F ) = E(F 2)− µ2
ℵq,t

= σ2
ℵq,t (15)

Equation 13 can be written as

E(F | f1) = µℵq,t +
σ2
ℵq,t

σ2
ℵq,t + σ2

N1

(f1 − µℵq,t), (16)

The selection intensity equation (Equation 4) can be utilized
to obtain the expected noisy mean fitness after selection.

µF1,t+1 = µF1,t + IσF1

= µℵq,t + I
q

σ2
ℵq,t + σ2

N1
. (17)

Using the aforementioned equation and Equation 16, we can
compute the expected true fitness value.

E(F | µF1,t+1) = µℵq,t +
σ2
ℵq,t

σ2
ℵq,t + σ2

N1

(µℵq,t + I
q

σ2
ℵq,t + σ2

N1
− µℵq,t).

µℵq,t+1 = µℵq,t +
Iσ2
ℵq,tq

σ2
ℵq,t + σ2

N1

. (18)

Assumed a species ℵq receives M external disrupt noises
from other species ℵi, i 6= q. The convergence time of a
species ℵq can be extended from Equation 18 with M exter-
nal disrupt noises, expressed as

4µ = µℵq,t+1 − µℵq,t = I
σ2
ℵq,tq

σ2
ℵq,t +

P
ρ2

q,i

. (19)

3.3 Dissimilar Schemata in Species
To derive the species disrupt noise ρ2

q,i of the species ℵq

from the other species ℵi, let two species ℵq and ℵi are
defined as a number of individuals containing two locally
superior schemata Hq, Hi at generation t. Hq is likely to
be disrupt by Hi on their dissimilar schemata. The number
of dissimilar schemata rq,i among two schemata Hq and Hi

can be calculated using a humming-distance-like equation,
defined as:

rq,i =
X

u(ha, hb), ha ∈ Hq, hb ∈ Hi, a = b.

u(ha, hb) =

�
1, if ha 6= hb,
0, if ha = ∗ || ha = hb.

(20)

The species disrupt noise ρ2
q,i can be derived as:

ρ2
q,i = rq,iσ

2
ℵq,bb. (21)

For example, let H1 = (∗ ∗ ∗ ∗ 1011 ∗ ∗) and H2 = (∗00011 ∗
∗ ∗ ∗) be the schemata of two species ℵ1 and ℵ2. The dis-
similar schemata of H1 among H1 and H2 are located at the
positions 6, 7 and 8. Thereby, the number of the dissimilar

schemata r1,2 = 3. The dissimilar schemata of H2 among
H1 and H2 are located at the positions 2, 3, 4 and 6. The
number of the dissimilar schemata r2,1 = 4.

3.4 The Convergence Time Model
Plugging Equation 21 into Equation 19, the convergence

time of a species ℵq can be written as:

4µ = µℵq,t+1 − µℵq,t = I
σ2
ℵq,tq

σ2
ℵq,t +

P
rq,i · σ2

ℵq,bb

, (22)

where ρ2
q,i is the species disrupt noise of the species ℵq from

the other species ℵi.
Equation 24 can be approximated by substituting con-

stants. For the bicriteria OneMax domain, assumed that
each species has same proportion of correct BBs, let pt be
the proportion of correct BBs in the species at generation
t, therefore the mean fitness µℵq at generation t equals `pt,

the average building-block variance σ2
ℵq,bb is approximated

by pt(1−pt), and the variance of fitness at generate t equals
`pt(1 − pt). Let the dissimilar schemata of two niches in
every generation be a constant rq,i = r, then the total dis-
rupt noise from M species can be simplified as:X

rq,iσ
2
ℵq,bb = rMpt(1− pt). (23)

The population is converged to optimal when pt = 1.
Equation 19 now yields

pt+1 − pt =
I√
`

p
pt(1− pt)

1q
1 + rM

`

. (24)

Therefore, the convergence time of a species ℵq can be de-
rived as:

tconv,ℵq =
π

2I

√
` + rM. (25)

Finally, the convergence time of the whole population is
written as:

tconv = max{tconv,ℵq}. (26)

If the number of external disrupt noises M is taken as 0 in
Equation 25, then the above relation Equation 26 reduces
to

tconv =
π
√

l

2I
, (27)

which agrees with existing convergence-time models for the
OneMax problem.

¿From the approximated convergence time model in Equa-
tion 25, it is shown that the convergence time of MOEAs go
as O(

√
` + rM). These factors are discussed as follows.

1. String length `: String length stands for the problem
size of the bicriteria OneMax problem. The conver-
gence time model suggest that the number of gener-
ations go as O(

√
`) in the case of a uniformly scaled

problem.

2. Dissimilar schemata in species r: Dissimilar schemata
stand for the dissimilarity of Pareto-optimal solutions.
Let’s recall that the optimal schemata of a species
is a Pareto-optimal solution, the minimum dissimilar
schemata of two species can be obtained using their
Pareto-optimal solutions. However, in reality, the dis-
similar schemata of two species rq,i changes over time.
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In order to approximate the convergence time model,
rq,i can be set to a constant, such as a proportion of
string length `. From the minimum dissimilar schemata,
it indicates that the convergence time increases as the
degree of dissimilar schemata (the dissimilarity of Pareto-
optimal solutions) increases. On the contrary, because
of species hitchhiking noise, the convergence time de-
creases as the degree of similar schemata (the similar-
ity of Pareto-optimal solutions) increases.

3. Number of species M : The number of species stands
for the number of Pareto-optimal solutions. If the
population is assumed to be divided into Q species
for Q Pareto-optimal solutions, then M can be set
to the number of Pareto-optimal solutions minus one
(M = Q−1) in Equation 25. However, in a real run of
a MOEA with a finite population size, a species may
only receive a limited number of external noises be-
cause the number of individuals in a species is smaller
than the number of noises. In this case, M can be
set to the number of individuals in the species or a
proportion of Q.

4. THE FIRST AND LAST HITTING TIME
The first and last hitting time stand for the time for

MOEAs to obtain the first and last Pareto-optimal solu-
tions. Because the convergence time model is constructed,
by making use of the takeover time of a Pareto-optimal solu-
tion in a species, a backward method can be used to derive
the first and last hitting time.

Takeover time analysis considers the time from an initial
proportion of Pareto-optimal solution until the species is
converged. Following standard practice [9], assuming an ini-
tial proportion P0 = 1/nℵq and a final proportion Pfinal =
(nℵq − 1)/nℵq , where nℵq is the species size unless stated
otherwise. The difference equation for tournament selection
is

Pt+1 = 1− (1− Pt)
s, (28)

where s is the tournament size. This equation may be solved
if the complementary proportion Qt = 1− Pt is used. Sub-
stituting into the equation yields the following:

Qt+1 = Qs
t , (29)

from which the solution may immediately be derived:

Qt = Qst

0 . (30)

Assuming that a species start with a single Pareto-optimal
solution (Q0 = (nℵq − 1)/nℵq ) and end with all but one
Pareto-optimal solution converged (Qfinal = 1/nℵq ) per-
mits the takeover time to be approximated directly. Taking
the natural log of the expression twice and recognizing that
ln(1− x) ≈ x yields the takeover time:

ts =
ln nℵq + ln ln nℵq

ln s
. (31)

Asymptotically, if ℵq is small, ln ln nℵq may be ignored.
¿From Equation 19, it is shown that a species can converge

to a niche more quickly if and only if this species receives
no disrupt noise from other species. Thus, the convergence
time is equal to Equation 27. Thereby, the first hitting time
can be written as:

tfirst = min{tconv,ℵq} − ts. (32)

The last hitting time can be written as:

tlast = max{tconv,ℵq} − ts. (33)

For the bicriteria OneMax problem, the first hitting time of
the bicriteria OneMax problem is:

tfirst =
π
√

`

2I
−

ln nℵq + ln ln nℵq

ln s
. (34)

The last hitting time of the bicriteria OneMax problem is:

tlast =
π

2I

q
` +
X

rq,i −
ln nℵq + ln ln nℵq

ln s
. (35)

5. POPULATION SIZING MODEL OF THE
BICRITERIA ONEMAX PROBLEM

The population sizing model of the bicriteria OneMax
problem is extended from the gambler’s ruin model of GAs [11].
It shows that the population sizing model for a binary en-
coded GAs is:

n = −2k−1 log (α)

p
π(m− 1)σ2

bb

d
, (36)

where n is the population size, k is the building block (BB)
length, α is the failure rate, and σ2

bb is the variance of the
BBs. For an OneMax with string length m = 100, k = 1,
σ2

bb = 0.25.
Similar to Section 3, by extending the population sizing

model for noisy environment [19], the population size nℵq

for a species ℵq with M external noises can be rewritten as
follows:

nℵq = −1

2
χk log(α)

√
π

d

q
(m− 1)σ2

ℵq,bb +
X

rq,iσ2
ℵi,bb,

(37)
where σℵi,bb is the average building-block variance of the
species ℵi. Assumed σℵi,bb = σℵq,bb, and let rq,i = r, Equa-
tion 39 can be simplified as:

nℵq = −1

2
χk log(α)σℵq,bb

√
π

d

p
(m− 1) + rM. (38)

For bicriteria OneMax problems with string length ` and the
size of BBs k = 1, then m = `.

Afterward, the population sizing model of MOEAs can be
written as:

n =

TX
t=1

nℵt , (39)

where T is the number of species in population. It is not easy
to determine T , because the schemata of Pareto-optimal so-
lutions are often overlapped, so that the number of species
required is smaller than the number of Pareto-optimal solu-
tions. For the bicriteria OneMax problem in Section 2.1,
the minimal number of species required is two (T = 2),
because the schemata of the Pareto-optimal solutions are
overlapped. All the Pareto-optimal solutions could be gen-
erated by uniform crossover within one generation using two
optimal schemata A1 and A2.

6. EXPERIMENTAL VERIFICATION
To verify the convergence time, the first hitting time and

the last hitting models, and the population sizing model
of MOEAs, the bicriteria OneMax problem with b = 4 is
used in the paper. A selectorecombinative MOGA with a
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binary tournament selection without replacement, uniform
crossover (pc = 1) and fitness sharing is used for the analy-
sis. An external archive is used only for storing the non-
dominated solutions found so far. The guideline of fitness
sharing given by Deb and Goldberg [5] is used to calcu-
late the niche radius for fitness sharing. The used fitness
assignment strategy is the generalized Pareto-based scale-
independent fitness function [12, 13]. The used GPSIFF is
briefly described below. Let the fitness value of an individual
Y be a tournament-like score obtained from all participant
individuals by the following function:

F (Y ) = p− q + c, (40)

where p is the number of individuals which can be dominated
by the individual Y , and q is the number of individuals which
can dominate the individual Y in the objective space, c is a
constant to make fitness values positive.

All the experimental results are obtained from 100 inde-
pendent runs of the selectorecombinative MOGA, per test
problem. Box plots is used to depicted some empirical re-
sults. A box plot provides an excellent visual result of a dis-
tribution. The box stretches from the lower hinge (defined
as the 25th percentile) to the upper hinge (the 75th per-
centile) and therefore contains the middle half of the scores
in the distribution. The median is shown as a line across
the box.

6.1 Verification of the Convergence Time Model
The convergence-time model predicted in Equation 25 is

verified with empirical results for the bicriteria OneMax
problem with string lengths, ` = 50, 100, 150, 200, 250, 300,
350, 400, 450, and 500, as shown in Figure 2. The bold line in
this figure is the convergence time of MOEAs for solving the
bicriteria OneMax problem with b = 4, which is obtained us-
ing Equation 25. The approximated convergence time is ob-
tained by the following manner. Because the disrupt noises
may act on the same schemata, so that the minimum disrupt
noise from the other species from the other species can be
derived using the most dissimilar Pareto-optimal solutions
of the bicriteria OneMax problem, ρ2

q,i = b = 4. Thereby,
the theoretical convergence time model in Equation 25 is ap-
proximated using the minimum disrupt noise from the other
species plus a proportion of `M , where rM = 4 + 0.02`M
and M = 15. Figure 2 clearly indicates the the model pre-
dict the convergence time well. The results indicate that the
convergence time of MOEAs is affected by the problem size,
the dissimilarity of Pareto-optimal solutions of a MOOP and
the number of Pareto-optimal solutions of a MOOP.

6.2 Verification of the Hitting Time
The first and last hitting time predicted in Equations 34

and 35 are verified with empirical results for the bicriteria
OneMax problem with string length ` =100 and b =4 in Fig-
ures 3 and 4. The dotted line in Figure 3 is the convergence
time of the OneMax problem with string length ` = 100.
The dotted line in Figure 4 is the convergence time of the
bicriteria OneMax problem with string length ` = 100. The
bold lines are the predicted first and last hitting time. From
the figures, it is shown that the experimental results agree
with the predicted first and last hitting.

6.3 Verification of the Population Sizing Model
The population sizing model predicted in Equations 39
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Figure 2: Verification of the convergence time model
for different problem sizes.
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Figure 3: Verification of the first hitting time of the
bicrtieria OneMax problem for different population
sizes. The bold line is the predicted first hitting
time.

is verified with empirical results for the bicriteria OneMax
problem with string length, ` = 50, 100, 150, 200, 250, 300,
350, 400, 450, and 500, and b = 4 in Figure 5. All the
experimental results are obtained from 100 independent runs
of the selectorecombinative MOGA with fitness sharing, per
test problem. Because the minimum dissimilar schemata
of A1 and A2 is b = 4, the term rM in Equation 38 is
approximated using rM = 4+0.02`M . Since the number of
species M is varied during the run time of a MOGA, M is
approximated using the number of Pareto-optimal solutions
minus one, M = 2b − 1 = 15. Finally, T is approximated
using the minimum number of species required to generate
all the Pareto-optimal solutions, T = 2.

The verification of the population sizing model for dif-
ferent problem sizes is reported in Figure 5. The results
indicate that the population sizing model is affected by the
problem size, the dissimilarity of Pareto-optimal solutions,
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Figure 4: Verification of the last hitting time of the
bicrtieria OneMax problem for different population
sizes. The bold line is the predicted last hitting
time.

and the number of Pareto-optimal solutions of a MOOP.
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Figure 5: Verification of the population sizing model
for different problem sizes.

7. CONCLUSIONS
In this paper, a quality-time analysis of MOEAs based

on the schema theorem and BBs hypothesis is presented.
By making use of simple and dimensional models, better
understanding of the effects of problem characteristics on
MOEAs are gained in theory. The convergence time model
of MOEAs, the first and the last hitting time of Pareto-
optimal solutions are constructed by integrating the selec-
tion intensity, the noise model, the hypothesis of niche and
species, and takeover time. It indicates that convergence
time and population sizing of MOEAs are affected by the
problem size, the dissimilarity of Pareto-optimal solutions,
and the number of Pareto-optimal solutions, in a MOOP.
The developed models should be helpful to MOEA practi-

tioners in understanding the behavior of MOEAs in solving
MOOPs.

The following concluding remarks are made according the
developed models:

1. Maintaining sufficient species during the run of a MOEA.
If the number of species M is smaller than the num-
ber of Pareto-optimal solutions, the MOEA may fail
in obtaining all the Pareto-optimal solutions. If the
number of species M is large, the MOEA will suffer
slow convergence. Niching techniques, such as fitness
sharing, are suitable methods for maintaining species.

2. Minimizing disrupt noises in species. If the good BBs
of a species is often disrupted, this species will suf-
fer slow convergence. Mate selection schemes, such
as similarity-based mating scheme [15], is beneficial in
reducing disrupt noises.

3. Maximizing hitchhiking effects in species. If the de-
sired schemata can be hitchhiked, then the conver-
gence speed of the species can be speed up.
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